Uni-Logo
You are here: Home Mitarbeiter Dr. Falko Ziebert
Document Actions

Dr. Falko Ziebert


    falko ziebert-klein.jpg   

Physikalisches Institut, Fakultät für Mathematik und Physik
Albert-Ludwigs-Universität Freiburg
Hermann-Herder-Str. 3, 79104 Freiburg, Germany
Tel.: +49 761 203 97779 Fax: +49 761 203 5855
email: falko.ziebert[at]physik.uni-freiburg.de

 

2002    Dipl. phys., Universität des Saarlandes, bei Prof. Walter Zimmermann
2006    Dr. rer. nat., Universität Bayreuth bei Prof. Walter Zimmermann
2006-2007    Postdoc, Argonne National Lab, U.S. bei Dr. Igor Aranson
2008-2010    Postdoc, ESPCI bei Dr. Elie Raphaël und Dr. David Lacoste
2011-2013    Postdoc, Experimentelle Polymerphysik, Universität Freiburg
seit 2014    Eigene Stelle (DFG), Experimentelle Polymerphysik, Universität Freiburg



Forschungsthemen:

  • nichtlineare Physik, Nichtgleichgewichts-Physik, Physik der weichen Materie, zelluläre Biophysik
  • Strukturbildung, Instabilitäten und Hydrodynamik, Flüssigkristalle
  • Zytoskelettdynamik und -struktur: Biofilamente, Motoren, Vernetzer; Selbstorganisation; Zellbewegung
  • Polymersysteme in eingeschränkten Geometrien, Entnetzung, Adhäsion, Polymergrenzflächen
  • Polymerfilme und biologische Membranen in externen Feldern, elektrostatische und elektrokinetische Effekte

 

Veröffentlichungen:

1. F. Ziebert and W. Zimmermann, Pattern formation driven by nematic ordering of assembling biopolymers, Phys. Rev. E 70, 022902 (2004).

2. F. Ziebert and W. Zimmermann, Comment on Instabilities of Isotropic Solutions of Active Polar Filaments, Phys. Rev. Lett. 93, 159802 (2004).

3. R. Peter, M. Hilt, F. Ziebert, J. Bammert, C. Erlenkämper, N. Lorscheid, C. Weitenberg, A. Winter, M. Hammele and W. Zimmermann, Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry, Phys. Rev. E 71, 046212 (2005).

4. F. Ziebert and W. Zimmermann, Nonlinear competition between asters and stripes in filament-motor-systems, Eur. Phys. J. E 18, 41 (2005).

5. F. Ziebert, M. Hammele and W. Zimmermann, On Cytoskeletal Patterns and Intrinsic Disorder Effects, Nonlinear Phenomena in Complex Systems, 9 (2), 198 (2006).

6. H. R. Brand, H. Pleiner and F. Ziebert, Macroscopic dynamics of polar nematic liquid crystals, Phys. Rev. E 74, 021713 (2006).

7. D. Smith, F. Ziebert, D. Humphrey, C. Duggan, M. Steinbeck, W. Zimmermann and J. Käs, Molecular motor-induced instabilities and crosslinkers determine biopolymer organization, Biophys. J. 93, 4445 (2007).

8. F. Ziebert, I. S. Aranson and L. S. Tsimring, Effects of crosslinks on filament-motor organization, New J. Phys. 9, 421 (2007).

9. F. Ziebert and I. S. Aranson, Rheological and structural properties of dilute active filament solutions, Phys. Rev. E 77, 011918 (2008).

10. R. Peter, V. Schaller, F. Ziebert and W. Zimmermann, Pattern formation in active cytoskeletal networks, New J. Phys. 10, 035002 (2008).

11. V. Rühle, F. Ziebert, R. Peter and W. Zimmermann, Instabilities in a two-dimensional polar filament-motor system, Eur. Phys. J. E 27, 243 (2008).

12. F. Ziebert and E. Raphael, Dewetting dynamics of stressed viscoelastic thin polymer films, Phys. Rev. E 79, 031605 (2009).

13. S. Swaminathan, F. Ziebert, D. Karpeev and I. S. Aranson, Motor-mediated alignment of microtubules in semi-dilute mixtures, Phys. Rev. E 79, 036207 (2009).

14. F. Ziebert, M. Vershinin, S. P. Gross and I. S. Aranson, Collective alignment of polar filaments by molecular motors, Eur. Phys. J. E 28, 401 (2009).

15. F. Ziebert and E. Raphael, Dewetting of thin polymer films: Influence of interface evolution, EPL 86, 46001 (2009).

16. T. Vilmin, F. Ziebert and E. Raphael, Simple view on fingering instability of debonding soft elastic adhesives, Langmuir 26, 3257 (2010).

17. F. Ziebert, M. Z. Bazant and D. Lacoste, Effective zero-thickness model for a conductive membrane driven by an electric field, Phys. Rev. E 81, 031912 (2010).

18. S. Swaminathan, F. Ziebert, I. S. Aranson and D. Karpeev, Patterns and intrinsic fluctuations in semi-dilute motor-filament systems, EPL 90, 28001 (2010).

19. F. Ziebert and D. Lacoste, A Poisson-Boltzmann approach for a lipid membrane in an electric field, New J. Phys. 12, 095002 (2010).

20. S. Swaminathan, F. Ziebert, I. S. Aranson and D. Karpeev, Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions, Math. Model. Nat. Phenom. 6, 119 (2011).

21. F. Closa, F. Ziebert and E. Raphael, Interplay of internal stresses, electric stresses and surface diffusion in polymer films, Phys. Rev. E 83, 051603 (2011).

22. S. Ryan, B. M. Haines, L. Berlyand, F. Ziebert and I. S. Aranson, Viscosity of bacte-rial suspensions: Hydrodynamic interactions and self-induced noise, Phys. Rev. E 83, 050904(R) (2011).

23. F. Ziebert and D. Lacoste, A Planar Lipid Bilayer in an Electric Field: Membrane Instability, Flow Field, and Electrical Impedance. In Ales Iglic, editor: Advances in Planar Lipid Bilayers and Liposomes, Vol. 14, Burlington: Academic Press, 2011, pp. 63-95.

24. F. Ziebert, S. Swaminathan and I. S. Aranson, Model for self-polarization and motility of keratocyte fragments, J. R. Soc. Interface 9 (70), 1084 (2012).

25. F. Closa, F. Ziebert and E. Raphael, Effects of in-plane elastic stress and normal external stress on viscoelastic thin film stability, Math. Model. Nat. Phenom. 7, 6 (2012).

26. M. Chowdhury, P. Freyberg, F. Ziebert, A. C.-M. Yang, U. Steiner and G. Reiter, Segmental Relaxations Have Macroscopic Consequences in Glassy Polymer Films, Phys. Rev. Lett. 109, 136102 (2012).

27. F. Ziebert and I. S. Aranson, Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells, PLOS ONE 8, e64511 (2013).

28. F. Closa, E. Raphael and F. Ziebert, Electro-hydrodynamic instability of stressed viscoelastic polymer films, Eur. Phys. J. E 36, 124 (2013).

29. J. Löber, F. Ziebert and I. S. Aranson, Modeling crawling cell movement on soft engineered substrates, Soft Matt. 10, 1365 (2014).

30. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen and J. Baschnagel, Continuous-Time Random Walk Approach to supercooled liquids:  I. Different definitions of particle jumps and their consequence, Phys. Rev. E 89, 042603 (2014).

31. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen and J. Baschnagel, Continuous-Time Random Walk Approach to supercooled liquids: II. Mean-Square Displacements in polymer melts, Phys. Rev. E 89, 042604 (2014).

32. F. Ziebert and I. S. Aranson, Modular approach for modeling cell motility, to appear in Eur. Phys. J. ST (2014).

 

Personal tools